THE NONLINEAR THEORY OF ELECTROMAGNETIC WAVE ATTENUATION

IN PLASMAS

N. S. Erokhin and R. K. Mazitov

Zhurnal Prikladnoi Mekhaniki i Tekhnicheskoi Fiziki, Vol. 9, No. 5, pp. 11-17, 1968

The absorption of a circularly polarized electromagnetic wave which
propagates in a plasma along a magnetic field is analyzed. The exact
equations of particle motion in the resonance region are solved with
aid of elliptic functions. It is shown that the nonlinear damping con-
stant has an oscillatory form. For t~> 0, it coincides with the constant
obtained on the basis of linear theory, while for t = «, in the absence
of collisions, it tends to zero. The influence of collisions on wave ab-
sorption is studied. It is shown that with allowance for collisions, the
damping constant depends on the amplitude of both the H, and H1'3/2
waves. The analysis of slowly decaying waves may be based on a
model proposed by Dawson [1] and later modified in [2,3]. According
to this model, all plasma particles are grouped into resonant and non-
resonant ones. The velocity distribution function of the nonresonant
particles is assumed to be the same as in the case of undamped waves,
The distribution function of resonant particles at the initial instant is
assumed to be Maxwellian. The nonlinear equations of motion of the
resonant particles are integrated exactly, The damping constant is de-
fined as the ratio of the energy expended by the wave at the resonant
particles to the total energy of the wave,

In nonlinear formulation, resonant absorption appears to be nonstation-
ary. After a time lapse on the order of several vibrational period of a
particle captured by the wave, nonstationary absorption ceases, and
stationary absorption, created by infrequent collisions, becomes essen-
tial. It is noteworthy that absorption of this type has been studied by V.
E. Zakharov and V. I. Karpman [4] for the case of plasma waves.

1. For simplicity, thermal motion will be taken in-
to account only for resonant particles. Nonresonant
particles are considered to be cold. The dispersion
equation for a circularly polarized electromagnetic
wave that propagates in a cold plasma along the mag-
netic field has the form [5]
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Let us examine a wave polarized in the direction of
electron rotation. The lower sign in (1.1) refers to
this wave. The analysis is limited to frequencies close
to wye, i.€.,

og € 0 < | og.l, (1.2)

thus, we assume that ions do not participate in the vi-
brations. Furthermore, there must be substantially
fewer resonant than nonresonant particles,

[0 | — & > kore - (1.3)

Let us transfer to a system of coordinates that
moves together with the wave. An electric field is ab-
sent in this system. The equations of motion of the
particles (electrons) have the following form:

dv, [ dt = Oy + O, sinkz (0g,=0g.),
dv, | dt = —og, + opw,coskz (0, =eHi/me),

dv, | dt = — o, (ve sinkz 4 v, coskz). (1.4)

Here, H; is the amplitude of the wave. The constant
field H, is directed along the z-axis. By performing
the change of variables
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i og, Y O !
vg=1—c—1, T = Oty (1.5)
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we obtain a system which is independent of z:

dy,

% _ dvt

dv T Unle = = d— gy,

dv H.

Lt =—qv ( — %m __1)

T K om _H°/- (1.6)

The system of equations (1.6) has two simple inte-
grals

p=vg + 200z, g = vy + v — 20, (1.7)

By eliminating v, with the aid of (1.7) from the last
equation of system (1.6), we arrive at a quadrature
solution

<)

S ild” =L. (8)
5 V %q2® — p* + 8o, L2pv 2 —v,8 2

The form of the response depends on the number of
real roots of the equation

¥ = wt — 2pw — 8oy 4 p? — 4ga2 = 0. (1.9)

Under the conditions of the problem studied, there

can occur two cases: a) Eq. (1.9) has two real roots
Uare = u = B* (p, u); (1.10)

b) Eq. (1.9) has four real roots

Vae = U £ R (p, u), v = —u =+ R (p, u),
R* = (p — u® & 202 | uy',
U= sp iy 1 4 Y2 VI M 4
+ 4y =1 — 4y Y1,
T = —%unp® 4 Y/a’pq — dat,

s = /302 — 4y p2, M = ¥ (12 4 Db, (1.11)

To cases a and b in the pg-plane there correspond
the regions

M (p, q) = 4p® + 4a?q® — 18u2p?g® + 270t 2= 0. (1.12)
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In Fig. 1, curve A'O'C' which separates the regions
which differ in the number of real roots of Eq. (1.9) is
one of the two branches of the curve M(p, q) = 0; the
second branch—the curve BDA"—limits the region of
possible values of p and q. Substituting expressions
(1.7) into M(p, q) = 0, we get an equation for the bound-
ing surface in the space (v§, Vi v;)

4 (o2 + 2a) + 4o (vt vg? — 200)8 —
— 1802 (vt + 2aw) (vF + 052 — 22) —
— (vt + 200z)y (v + ve? — 20¢)? 4 2704 = 0. (1.13)
In the plane vy =0, Eq. (1.13) can be written in the
form of the product
(@ + vegey)? (4o — dorg® L
+ 18avgve—vetv® + 27a?) = 0. (1.14)

The surface (1.13) intersects the plane vy =0 along
the curve

4o — bovsd + 18avzry — 2w + 272 = 0,  (1.15)
and is tangential to it along the hyperbola
a -+ vz = 0. (1-16)

Equation (1.18) is the equation of a nonlinear dipole
with a potential energy x(v¢). The particles that corre-
spond to hyperbola (1.16) are situated at the bottom of
the potential well (Fig. 2); to curve (1.15), or more
precisely to its segments O'A™ and O"A' (Fig. 3),
there correspond particles with an infinite period (Fig.
4). It should be noted that particles which during their
motion in velocity space intersect the plane v, = 0 in
the region A™MO'O"A' become trapped in the VEVRT
plane, within a certain angle. They constitute an ana-
log to particles trapped by a plasma wave.

Let us now analyze the solution of Eq. (1.8). In case

a, it takes the form
mv — R
l}z = ftll— m = +
2nm (vg, ~— vy,)
nt—m?—(n—mpen [F (P, k) —t Virm, k] °
1 p— du
k2 —_ —
2’*4VWL+wwﬁ—warV'

o2
nt, m? =yt 4 T:FuR",

. A
Qo = 2arc tg [% (u)] .

2 e

-+

(1.17)

Here, F(¢,k) is an incomplete elliptic integral of
the first kind, and R* is as defined in (1.11).

In case b, the solution depends also on the interval
of integration over vg:

oy = O (v —14) + 24 (01 — va) SDE[F (Mo, 7) 4- 78, 7]
LT o = o (o1 — va) SEE[F (W, 1) F-15, 7]

536

3

Fig. 3

(n <vt <L v3),y

vy (ve — vg) — va (Vg — ) SN2 [ F (Ao, r) 3- 16, 7]
v — vy — (v3 — vy) s [F (ho, r) + 18, r]

(ve < vy < 29),

Vg =

. (”s—vd)(vl—vm) -
Mo = arc sin (——__—(vx ) (g —09) ) ,

Ao = arc sin ((vz %) (%8 — vyo) )'/’

r = {[(v1— v) ] (v1— v3)] [(vs — V) | (Ve — V)]}',

=1, [(Vl_va)/(%—'vet)]l/’- (1.18)

Here
i=1,2,3,4),

vy = vy

Y>> >U >,

For affp<1, q~ (vae/wHo)z)l/z, the expression
for vy becomes appreciably simpler and has the same
form both for case a and for case b:

N R I T
v z _— = —_— —_—— -
Ve 4Vf< ? svp)+

a2 a2 Ay, -
+( et =——_—lcost¥V p—
p¥Vp P VP ) Ve
v, aﬁvaovﬁ()) i —
— = ——=)sin~¥ 4
( Vp + apVrp Vp
oF (252 — 9% —
—_— 0521
e Vo+

a2y, v —_
070 -
4+ —L T sin2v Vp
20 Vp ’

{(1.19)

where Vg, Vyg, and vy are the projections of the par-
ticle velocity onto the axes at the initial instant.

Fig. 4



2. The damping constant will be determined as the
ratio of the energy expended by the wave at the reso-
nant particles to the total energy E of the wave,

T:%SSS_*;_![vx2+vy2+<v,+ T)Jaf dv.dv,dv, ,

0)2

p = (k_c>2 [1+ B +W] (2.1)

Assuming that the number of particles is conserved
and that vx? + vy? + v;2 = const, we rewrite (2.1) as
follows:

T=—2—SSva,< k) /dvxdv dv, (2.2)

The derivative 9f/8t will be determined from the
kinetic equation, under the agssumption that at the ini-
tial instant the particle velocity distribution function
is Maxwellian. The expression for the damping con-
stant takes the form

- ) ()
Qeefis

Here, the value of f; in the integrand is taken only
in the v, = (w + wyy)/k (vg 0) plane, For cases a and
b, we have

)foduxdv,,dv, (2.3)

sn (F (9, k) + 1 Vam)dn(F (@, k) +7 Vam)

7 = i+ min —m) —en (F (g, k) +5 ¥ am))e
(M (p, 9)<0),
sn (2F (i, r) — 2v8) dn (2F (n, r) — 2t8)
V=1

A F (1= 29/ (72— v)]s® (F (B, N — ZB)F
M(p, )>0, 9< v, <v1),

— p_ SB(2F (A, 1) — 2¢6) dn (2F (b, r) — 218)
P10 = O T [(oa— v0)/ (7 — va)] s0¥ (F(R, 7) — 270)

(M(p, )30, <o < g), (2.4)

h=2 ()’ (v3 — vy)
T a(r—myE

I= (v1— vg) (V2 — v3) (v, — v )’/x l — ) (2.5)

4o Vg — v (7’1 —n)-

For o/(Vp <1, q ~ (vae/wHO)Z) the latter expres-
sion can be simplified as follows:

Upg = — <av +oVT—vg)sm-rV~+

av, v —_
+<Un+ Zp")cosﬂ/p —

u—(viiz;L) sin 2t V_—- —Sos2tVp+ .... (2.6)

Here, only the first-order terms with respect to
(aAp) are retained.

First, we show that for T — 0, a nonlinear damping
constant reduces to a linear one. For small 7, parti-
cles with the smallest vibration period will engage in
effective energy exchange with the wave. For these
particles, the condition aAp « 1 is fulfilled. Hence,

instead of Ve its approximate expression from for-
mula (2.6) can be substituted into (2.3). After some
calculation, we get

T = g2 eXp [_ <.‘f_t(.°.”_°>z] X

kvp,
k2c? O \2 771
[1+ <‘°+‘°Ho> ] X
s G sin (Vp| 9| 1) iV 2.7
X H’/gvae ‘>__ VE Vp .
Dt

Here, p; is the minimum value of p for which for-
mula (2.6) is still applicable. Letting 7 tend to zero,
we arrive at a result from linear theory [5].

For an arbitrary instant the damping constant is expressed by triple
integrals, which do not lend themselves to any essential simplification.
Therefore, in order to determine the principal characteristics of this
constant, we use the results of [2,3] in which integrals of this type have
been evaluated. If, for example, the new variables ¢, k, q are sub-
stituted for vy, vy, vz in (2.3), then ¢ will correspond to €, and k will
approach ¢ in formula (3.9) of [2].

In [2], it was shown that the damping constant will fluctuate with
a characteristic time that differs by a factor on the order of unity from
the vibrational period of particles situated at the bottom of the poten-
tial well, In the case under consideration, the velocity components of
such particles satisfy the hyperbolic equation (1.18), in which case
vg >0, vg < -t/

By setting vgy ~ kvre/wyy in (1.17), we obtain the
vibrational period of particles at the bottom of the po-
tential well

4t — 2%
| Oy | (am)' " (kv 0p, ) (2.8)

Ty =

Thus, as in the case of plasma waves, the charac-
teristic time of the damping-constant fluctuations is
inversely proportional to the square root of the wave
amplitude. Hence, for small-amplitudes waves, process-
es in the resonant region proceed very slowly, the
particle distribution function experiences almost no
distorsion during a time on the order of the period of
plasma oscillations (T = 27/w), and a Maxwellian dis-
tribution function may be selected for the initial instant.

For large 7 (1 > T,) the damping constant tends to zero, since the
numerator of the integrand in (2.8) contains an elliptic function (2.4)
which is integrated over its modulus, The decrease of the damping
constant can be understood from simple physical considerations. The
total energy of all particles situated on a trajectory with fixed p and q
is conserved in the course of time if the distribution function depends
only on these motion integrals. In the general case, the total energy
varies between the maximum and minimum values which define p and
q. At the initial instant, when the distribution function is Maxwellian,
the total energy of most trajectories increases, and the wave attenuates.
For large 7, owing to the difference in the periods, even such majec-
tories that are very similar with respect to p and q experience a phase
shift, This means that the mean energy of all trajectories remains con-
stant, and the wave ceases to attenuate. It should be noted that this
result holds only in the absence of collisions, i,e., ¥ =0 (v is the col-
lision frequency). If v # 0, expression (2.8) is valid for times shorter
than the particle collision time,

ToL tA/v. 2.9

8. Owing to the collisions, the particle velocity dis-
tribution function will be partially restored, or, in
other words, will become Maxwellian. For large t>
> 1/v, the plasma attains a steady state. The distribu-
tion function is determined in this case from a steady-
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state kinetic equation containing a collision term, writ-
ten in Landau's form

_ v 0 /Pm of
T 2njogy| 97 |\ @p, ) Ovg

4
¥=arctg—, v=
%

[0}
(Uz;—i + r_—wHO')f] s
_ Sl
m”(la)H0|—-a))s !

2
a =14 (F) o+ o+ v, 3.1)

where v has the meaning of the effective collision fre-
quency in the resonant region, ny is the density, and L
is the Coulomb logarithm.

It is convenient to change to the new variables 9 and

B
8=un —1, p=p+2q
g=u2 fov2— 2. (3.2)
Since the distribution function is most sensitive to
the longitudinal velocity and since q = (kvpe/why) in

the resonant region, then Eq. (3.1) in the new vari-
ables takes the form

Bf_ va _19_ o
ﬁﬁ‘lw'golaﬁ{(lwml 1)1+

+3s (B — 4a ¥ gsin? %)l/' [2 (vae>2 g—é + f] )

R: 1)

6=sgnvy, a=1-+ g(ogo/kvre)?. (3.3)

This equation differs from Eq. (1.8) in [4] only in
the symbols employed. With the aid of the last equation
in system (1.4), we calculate the energy expended by
the wave per unit time at particles with a fixed q,

aw 1 O P
@ T E " l% %
x {a0 { Sra@p—a@rs,
=z a® o

A(8) = 42V gsin? (1) 0. (3.4)

With the aid of the results obtained in [4], we re-
write expression (3.4) in the form

dW 1 [ s \thmnowv|ogyla
= () — /
a & ( P ) Wogr  x d7X
o? q i) %
xexp[ 5 —2—<va¢;>],
Oy | — O
co'.: I—__—Hol . (3-5)
kvp,
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By integrating (3.5) over q and dividing by the total
wave energy, we obtain the damping constant

vo= g VAr ()2 |/ ot exp (— ) x
e e el e

In the case of stationary absorption, vy, depends on
the amplitude of both the H; and H1‘3/2 wave. Generally
speaking, formula (3.6) holds for t> 1/v. A general
expression describing the damping constant with al-
lowance for collisions at any instant could not be de-
rived. A qualitative plot of ¥ vs. t is shown in Fig. 5.

The authors are indebted to P. Z. Sagdeev for his
attention and valuable advice.
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